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Abstract

This paper deals with the macroscopic modeling and numerical simulation of columnar dendritic solidification of binary alloys. The
macroscopic governing equations and associated effective transport properties were previously derived using a volume averaging tech-
nique with local closure. The macroscopic model takes into account the spatial variation of the pore-scale geometry within the mushy
zone, which leads to additional terms involving porosity gradients. The second important feature concerns solute mass conservation,
which is described by considering a macro-scale non-equilibrium accounting for chemical exchanges at the solid–liquid interface. A sim-
plified version of the model is validated through a comparison of the numerical solution to three experiments available in the literature.
Porosity extra terms are systematically estimated on the basis of these numerical simulations, and the influence on solidification of effec-
tive transport properties such as permeability and interfacial solute exchange coefficients is investigated.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Solidification phenomena are encountered in a wide
range of industrial applications often related to metallurgy
(casting, welding, . . .) or in natural situations such as freez-
ing, magmatic crystallization, or snow formation. They are
also involved in the nuclear security context where the cor-
ium multi-component mixture possibly resulting from
severe accident needs to be rapidly solidified [1]. For this
reason, solidification modeling of multi-component mix-
tures has been the subject of intense research activity in
the last decades and one of the most challenging problems
lie in the coupling of phenomena occurring at different
length scales [2]. Indeed, in columnar dendritic solidifica-
tion, heat and mass transfer in both liquid and solid phases
are coupled by the transient development of the ‘‘mushy
zone’’. It is necessary to have an accurate description of
transport phenomena within this mushy zone where the
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interdendritic liquid flow and local heat and solute trans-
port processes play a key role on the micro-macro-segrega-
tion, and, therefore, on the final product quality.

Usually, the dendritic mushy zone is described as a por-
ous medium [3] and macroscopic conservation equations
have been obtained using mixture theory [4–7] or up-scal-
ing methods such as homogenization [8,9] or volume aver-
aging methods [10]. Since the complexity of local geometry
and physical phenomena may be included in averaged con-
servation equations through effective transport properties,
the method of volume averaging has been often chosen
[11–16] in the solidification context. Homogenization and
averaging procedures require scale separation between the
pore scale and the porous medium scale. It seems that this
requirement is not satisfied in the case of dendritic zones,
where local geometry evolves continuously. This has been
studied thoroughly, using actual description of mushy
zones, and it has been shown that continuous spatial vari-
ations of the geometry of the dendrites (evolving heteroge-
neities) are most of the time ‘‘moderate’’, the scale
separation in the mushy zone remaining satisfied [17].
Actually, accounting for these evolving heterogeneities
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Nomenclature

Ak interfacial solid–liquid area concentration (m�1)
Ck volume average concentration in phase k
Cpk Massic heat capacity of phase k (J kg�1 K�1)
Dk molecular diffusion coefficient in phase k

(m2 s�1)
D‘ effective diffusion–dispersion tensor (m2 s�1)
F Forchheimer correction
~g gravity (m s�2)
H Massic enthalpy (J kg�1)
H height of the experimental domain (m)
hmk interfacial species exchange coefficients in phase

k (s�1)
K permeability tensor (m2)
‘ index for liquid phase
LM macroscopic length scale of the mushy zone (m)
La latent heat (J kg�1)
L width of the experimental domain (m)
‘b primary interdendritic length scale (m)
‘k characteristic length scale of the mushy zone (m)
P‘ pressure in liquid phase (Pa)
Pe Péclet number
Q volumic heat generation (W kg�1)

R0 characteristic size of the averaging volume (m)
s index for solid phase
T temperature (K)
t time (s)
~V ‘ liquid velocity (m s�1)

Notations

h.ik intrinsic volume average in phase k

~: fluctuation

* notation for thermodynamical equilibrium

Greek symbols

bT thermal expansion coefficient (K�1)
bC solutal expansion coefficient
ek volume fraction of phase k

l‘ dynamic viscosity in liquid phase (Pa s�1)
Keff effective conductivity tensor (W m�1 K�1)
k thermal conductivity (W m�1 K�1)
k1 primary dendritic arm spacing (m)
k2 secondary dendritic arm spacing (m)
qk density of phase k (kg m�3)
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provides additional terms in the macro-scale equations that
include porosity gradients [18–21] whose influence on mac-
roscopic fields has to be analyzed.

Besides the difficulty associated to the evolving geome-
try, another important difficulty in solidification modeling
lies in species transport, characterized by very different
molecular diffusivities in the liquid and solid phases. This
is known to give many different macro-scale models,
depending on the relative importance of the pore scale
transport properties. In most existing models, the solute
transport has been macroscopically described using only
one conservation equation, assuming the mass diffusion
rate in the solid phase to be extremely fast (lever rule)
[11,22,23] or very slow (Scheil’s description) [7,24,25].
Recently, a non-equilibrium description of the solute trans-
port has been proposed, with the interfacial mass exchange
term being proportional to the difference between inter-
facial and volume-averaged concentrations [13,26]. In this
formulation, the mass exchange coefficient was found to
be mainly dependent on the diffusion length [27], while it
has been shown that it also depends on tortuosity and local
dispersion phenomena [26].

At the time, papers have been published about the
implementation and use of numerical models associated
to some of the macro-scale models described above
[14,27–29]. The above discussion has indicated the possible
influence of model additional features, such as: (i) the
impact of the geometrical complexity of the mushy on
macro-scale equations and effective properties, (ii) the
introduction of chemical non-equilibrium mass transfer
between the liquid and solid phases during phase change.

This is the objective of this paper to discuss the impact
of these additional features on the macroscopic modeling
of non-homogeneous columnar dendritic solidification.
After a brief presentation of the macroscopic model, a
numerical validation of a simplified version of this model
is obtained by comparison with three solidification experi-
ments [29–31]. The porosity extra terms are estimated on
the basis of the numerical results, and this allows to discuss
the validity of the proposed simplifications. Finally, the
influence of effective transport properties such as perme-
ability and interfacial solute exchange coefficients on the
solidification process is investigated.

2. Macroscopic model

The macroscopic solidification model has been derived
using the volume average of the local problem describing
mass, momentum, energy and species conservation, in both
solid and liquid phases and at the solid–liquid interface
[18,26,32]. The set of pore-scale equations is integrated
over an averaging volume, whose size R0 is supposed to
be large compared to the primary interdendritic length
scale lb but small compared to the macroscopic length scale
of the mushy zone LM. Such an upscaling method has been
extensively discussed in the porous media literature [10]
and will not be presented in this section. All details con-
cerning the derivation of the macroscopic model are
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provided in several papers [18,26,32] and, for conciseness,
only the main characteristics of the model are presented
in relation to the numerical simulations performed in Sec-
tions 3–5.

2.1. Geometrical considerations

As indicated in the introduction, the volume averaging
method is usually valid for homogeneous porous struc-
tures for which scale separation between the different
length scales is satisfied. In columnar dendritic regions,
the situation is much more complex due to continuous
spatial variations (evolving heterogeneities) of the pore-
scale geometry, and therefore the average transport prop-
erties. In this case, scale separation depends on the spatial
geometry variations which may be characterized by a
geometry decrease rate as in [17]. In this paper, it was
found that, for large evolving heterogeneities, averaging
without any scale separation would lead to non-local
terms and very complex models. For lower geometry rate
of variation, additional terms containing porosity gradi-
ents must be included in the analysis, at the expense of
more complexity. For moderate rates of variation, it is
expected that the traditional form of the equations may
be retained, with effective parameters being macroscopi-
cally heterogeneous [17]. As emphasized in this reference,
most dendritic structures seem to have moderate evolving
heterogeneities. However, the possible influence of the
additional porosity gradient terms has not been quantita-
tively investigated, and this will be one of the objectives of
this paper. Before proceeding to the description of the
macro-scale model, it must be emphasized that an alterna-
tive to the one-domain representation (i.e., a continuous
description going from the solid to the mush then the
liquid) exists. A two-domain approach may be introduced,
with macroscopic models in both the solid and liquid
regions coupled at the interface by jump boundary condi-
tions following ideas put forth in [33–35]. In this
approach, mushy zone effects are dealt with macro-scale
jump coefficients, and we believe that it is still a challenge
to incorporate this physical description in such a lumped
model. While it cannot be rejected at this point, this is
beyond the scope of this paper to explore this route.
2.2. Macroscopic model

In this section the macroscopic conservation equation
for mass, momentum, solute, energy and solidification rate
are presented and commented. The associated closure
problems have been previously presented [18] and will
not be repeated here.

Mass conservation

o

ot
ðe‘q‘Þ þ r:ðe‘q‘h~V ‘i‘Þ ¼ �

o

ot
ðesqsÞ|fflfflfflffl{zfflfflfflffl}

Solidification rate

ð1Þ
where the right hand side (RHS) of Eq. (1) stands for the
solidification rate.

Momentum conservation

o

ot
ðe‘q‘h~V ‘i‘Þ þ r:ðe‘q‘h~V ‘i‘h~V ‘i‘Þ

¼ �e‘~rhP ‘i‘ þ e‘l‘r2h~V ‘i‘ þ l‘~re‘:~rh~V ‘i‘

þ l‘ðr2e‘Þh~V ‘i‘ þ e‘q‘~g � e2
‘l‘K

�1:h~V ‘i‘

� e2
‘l‘K

�1:F:h~V ‘i‘ ð2Þ
In Eq. (2) the dispersive flux r:ðe‘q‘h

f~V ‘
f~V ‘i‘Þ has been

neglected since it as been shown to be much lower than the
convective and friction terms in the liquid and mushy
regions, respectively [32]. The next to the last term of Eq.
(2) is the Darcy’s term where K is the permeability tensor
while the last term represents the Forchheimer correction
where F is an inertia tensor. Local closure problems have
been derived for their determination [19,21,36] and numeri-
cal solutions for K in the context of columnar dendritic struc-
tures have been obtained [37,38]. In Eq. (2), e‘l‘r2h~V ‘i‘ is

the first Brinkman correction term while l‘~re‘:rh~V ‘i‘ and
l‘ðr2e‘Þh~V ‘i‘ represent the second Brinkman correction
related to the heterogeneity of the dendritic porous structure
[17,38]. Actually, these terms are expected to be negligible in
the core of the mushy zone while they should have a signifi-
cant influence in the vicinity of the tip of the dendrites. These
extra terms will be numerically quantified in the next section.
Rigorously, this spatial porosity dependence leads to non-
local closure problems whose determination remains a chal-
lenge. However, on the basis of scale separation it has been
shown that these ‘‘source terms’’ in the deviation problems
are small and therefore classical boundary value problems
can be used in dendritic structures [17,18,38].

Solute conservation
As previously said, the macroscopic solidification model

is characterized by chemical non-local equilibrium, i.e., the
macroscopic concentrations may not be linked directly by
the micro-scale thermodynamic equilibrium condition valid
at the solid–liquid interface. Under these circumstances
[26], the macroscopic solute transport is represented by
two average equations

Solid phase

o

ot
ðesqshCsisÞ � C�s

o

ot
ðesqsÞ

¼ r:ðesqsDs
~rhCsisÞ þ qshmsðC�s � hCsisÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Interfacial mass exchange

� qsDsð~resÞ:~rhCsis �r:ðqsDsð~resÞðC�s � hCsisÞÞ ð3Þ

Liquid phase

o

ot
ðe‘q‘hC‘i‘Þ þ r:ðe‘q‘hC‘i‘h~V ‘i‘Þ þ C�‘

o

ot
ðesqsÞ

¼ r:e‘q‘D‘
~rhC‘i‘ � q‘D‘ð~re‘Þ:~rhC‘i‘

þ q‘hm‘
ðC�‘ � hC‘i‘Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Interfacial mass exchange

�r:ðq‘D‘ð~re‘ÞðC�‘ � hC‘i‘ÞÞ ð4Þ
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where interfacial mass exchange, expressed in terms of the
difference between interfacial ðC�k ; k ¼ l; sÞ and volume-
average concentrations (hCkik, k = l,s), and porosity gradi-
ent terms are included. In the interfacial terms, coefficients
hms and hm‘ are obtained from the associated local closure
problems which have been numerically solved using sche-
matic and digitized columnar dendritic structures [26]. The
results have shown the dependence of these coefficients
both on the liquid volume fraction and the local Péclet
number. In Eqs. (3) and (4) Ds and D‘ are the molecular
diffusion coefficients in the solid and liquid phases, respec-
tively, while D‘ represents the effective diffusion–disper-
sion tensor depending on the local structure but also on
the local flow intensity. Actually, this active dispersion
model is found to be less sensitive to the local Peclet num-
ber than the passive dispersion representation, where no
diffusion in the solid is assumed [39]. This is due to the
impact of the boundary condition at the solid–liquid
interface: Dirichlet condition in the active case and Neu-
mann condition in the passive model. In this latter case,
since no exchange is possible at the solid–liquid interface,
tortuosity effects are also present in the effective diffusion
tensor [39].
2.2.1. Energy conservation

Since thermal diffusivity is much higher than the molec-
ular difusivity, the assumption of local thermal equilibrium
is acceptable [40–42]. Therefore, macroscopic energy con-
servation is governed by only one average equation whose
representation in terms of enthalpy is given by
o

ot
ðqhHiÞ þ r:ðe‘q‘hH ‘i‘h~V ‘i‘Þ

�
Xs

k¼‘

X
i¼a

b½hH iikqkDk:~rhCi
ki

k�

þ
Xs

k¼‘

X
i¼a

b½hH iikqkDkð~rekÞðCi�

k � hCi
ki

kÞ�

¼ r:ðKeff :~rhT iÞ þ hqih _Qi ð5Þ
where Keff is the effective conductivity tensor taking into
account both tortuosity and local dispersion effects [18].
2.2.2. Solidification rate

The solidification rate in Eqs. (1), (3) and (4) is obtained
by averaging the species mass balance equation at the
solid–liquid interface. Its macroscopic form is given by
o

ot
ðesqsÞ ¼

1

C�‘ � C�s
½qshmsðC�s � hCsisÞ þ q‘hm‘

ðC�‘ � hC‘i‘Þ

� qsDsð~resÞ:~rhCsis � q‘D‘ð~re‘Þ:~rhC‘i‘� ð6Þ
where interfacial mass exchange terms and porosity gradi-
ent are involved.
3. Simplified model and numerical validation

The macroscopic model derived in the previous section
leads to a set of equations including a number of non-clas-
sical terms, in particular, extra terms arising from the
porosity gradients, and a two-equation formulation for
species conservation. Due to the complexity of this model,
a simplified version, without the extra terms, but still based
on the chemical non-equilibrium representation, is pro-
posed. These extra terms involving porosity gradients are
discarded on the base of estimates (Section 5). The simpli-
fied model is numerically solved and results are compared
to experiments and numerical results available in the
literature.

3.1. Simplified model

The simplified model is based on the following
assumptions:

(1) The Boussinesq approximation is considered: the
density is such that ql = q0 everywhere in the equa-
tions, except in the gravity term in the momentum
equation, where a linear approximation is used

ql ¼ q0ð1� bTðhT i � T refÞ � bCðhC‘i‘ � CrefÞÞ ð7Þ

(2) Permeability variation with porosity is given by an
isotropic Kozeny–Carman law [43]

K ¼ l2
k

180

e3
‘

ð1� e‘Þ2
ð8Þ

where the ‘‘pore size’’ lk is a characteristic length of
the mushy zone [16,22,23,44]. The primary dendritic
arm spacing k1 is generally used when the flow is par-
allel to the axis of the dendrites, and the secondary
arm spacing k2 when the fluid velocity is orthogonal.
For the situations under consideration in this analy-
sis, the secondary arm seems to be more adapted
[45,46] although other correlations could be used.

(3) The interfacial species coefficients are assumed to be
dependent on the solid–liquid specific area Ak such as

hmk ¼
AkDk

lk
and Ak ¼

12

eklk
ð9Þ

Expression (9) has been obtained for simple geometric
structures in purely diffusive situations by Wang and
Beckermann [47]. Let us note that a similar form has
also been obtained by solving the closure problems
for stratified systems [48]. In the following calcula-
tions, lk = k2 leading to

hmk ¼ 12
Dk

k2
2ek

ð10Þ

(4) Rigourously speaking, the effective conductivity ten-
sor of the dendritic mushy zone is composed of an
average diffusion term keq = esks + e‘k‘ and of both
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dispersion and tortuosity contributions. However, in
the absence of an accurate estimation of dispersion
effects, and due to the small differences between the
phase conductivities, both contributions are neglected
in the present model. In Table 2 some typical values
of thermal conductivities corresponding to the differ-
ent components of the alloys under consideration in
the test-cases are provided.
Table 1
Physical properties of metal alloys

Pb(48%)–Sn Pb–Sn(5%) Bi(10%)–Sn

Cp‘ , Cps
J kg�1 K�1 200 260 250

k‘, ks W m�1 K�1 50 55 60
La J kg�1 53,550 61,000 59,430
q‘, qs kg m�3 9000 7000 7550
bT K�1 10�4 6 · 10�5 9 · 5 · 10�5

bC 0.45 �0.053 �3 · 10�3

l‘ kg m�1 s�1 10�3 10�3 1.85 · 10�3

D‘ m2 s�1 1 · 10�9 1 · 10�9 1.8 · 10�9

Ds m2 s�1 1 · 10�13 1 · 10�13 1 · 10�13

k1 lm 350 200 1000
k2 lm 40 65 300
Tini K 489 499 500
h W m�2 K�1 400 300 1
Tout K 298 298 �2 K min�1

H cm 6 6 6
L cm 10 10 5
3.2. Numerical procedure

The numerical approximation of the conservation equa-
tions was performed by using a finite volume method. The
set of differential partial equations is characterized first by
non-linearities and by the strong coupling of the equations.
This makes difficult the resolution of the system and the
most robust solution would probably to use an implicit
scheme involving all unknown variables. However, in order
to save computational time, a semi-implicit three steps
resolution was developed. The first step consists in the re-
solution of the Navier–Stokes equations with a Simple
algorithm. Then, the energy conservation equation is
solved using the previously calculated velocity field and
finally, the solidification rate is calculated together with
the species conservation in the liquid and solid phases, in
the same linear system. This procedure is iterated until con-
vergence of all the macroscopic fields.

3.3. Description of the test cases

The accuracy of the numerical code is evaluated by com-
paring the numerical results to experimental results available
in the literature. Note that, because of the experimental dif-
ficulties, only few experiments related to solidification of
binary alloys have been published. Three of them, concern-
ing metallic alloys, have been selected for the present valida-
tion. In the three cases, a parallelepipedic cavity is
considered and the initial melt (at uniform concentration
and temperature) is cooled from one vertical side wall, the
Fig. 1. Experimental configuration
other boundaries being assumed as adiabatic (Fig. 1). Let
us present in details the selected experimental cases.

3.3.1. Lead–tin experiments

These experiments have been performed by Hebditch
and Hunt [30] with Pb–Sn mixtures and the results have
been used in Ahmad et al. [29] for a validation exercise
of two macroscopic solidification models: the FEM code
developed by Rappaz and coworkers [49] and the FVM
code implemented by Combeau and colleagues [50]. Two
different initial compositions have been considered: a 48%
lead alloy (experiment A) and a 5% tin alloy (experiment
B). In both cases, macro-segregation has been observed
at the end of the ingot solidification and temperature evo-
lutions were measured at various locations. The properties
corresponding to the mixture are given in Table 1 and a
simplified phase diagram of Pb–Sn alloys is presented in
Fig. 2. The heat flux extracted from the left side of the
domain is assumed to be given by a uniform heat exchange
coefficient with the outside at a constant temperature.
for the reference experiments.



Table 2
Conductivity for differents metals

Pb Sn Bi Bi–Sn

Tfusion K 600 500
ks (T = 300 K) W/m K 35.3 66.6 7.87
ks (T = 500 K) 32.8 59.6
k‘ (T = 500 K) 30 30
k‘ (T = 600 K) 15 32
k‘ (T = 1000 K) 20 32

Fig. 2. Phase diagram of Pb–Sn melt.
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3.3.2. Bismuth–tin experiment

A Bi(10%)–Sn experiment was performed by Quillet [31]
(experiment C) . In the experimental device, the extracted
heat flux was monitored in order to decrease the cold
wall temperature at a constant rate. The temperature field
was measured at different times in various locations. A
post-mortem analysis of the ingot was performed to obtain
the macrosegregation field. In this section, the comparison
is provided for a cooling rate of 2 K min�1. The simplified
phase diagram of hypoeutectic Bi–Sn alloys is presented
in Fig. 3. For all the three cases the physical properties,
the geometry and boundary conditions are summarized in
Table 1.

3.4. Comparison results

The comparison of the experimental results with the
numerical simulations performed with the simplified model
are presented below.
Fig. 3. Phase diagram of Bi–Sn.
3.4.1. Experiment A (Sn–48% Pb)

In this case, the solutal buoyancy force is in opposition
with the thermal buoyancy force. As the solutal effect is
dominant, we observe an inversion of the convective
motion after the beginning of solidification during which
thermal convection is dominating, and the circulation loop
is ascending along the cold wall. This is illustrated in Fig. 4
which represents streamlines obtained with the present
code and by the FVM code presented by Ahmad et al.
(after 50 s of solidification). It is shown that the streamlines
obtained with this model are qualitatively similar, but pres-
ent some differences in the shape and the location of the
center of the vortex. We may expect these differences to
come from the different treatment of species conservation.
Indeed, in Ahmad et al. a single concentration formulation
is used and species diffusion is neglected. This may influ-
ence the buoyancy forces and therefore the intensity of
natural convection.

In Fig. 5, the results are presented in terms of iso-
concentration lines at t = 400 s, in order to allow for the
comparison with the results of the FVM code (Ahmad
et al. [29]). Both calculations show a solute enrichment in
the upper part of the domain resulting from the solute
redistribution. We find a good qualitative agreement with
the FVM simulations reported in [29] and with Hebditch
and Hunt experimental results [30]. It can be noticed in
the concentration field obtained with the present model
Fig. 4. Streamlines (Dw = 3.67 · 10�6) after 50 s of solidification for
experiment A: (a) our model and (b) FVM code in Ahmad et al. [29].



Fig. 5. Concentration enrichment isovalues in % after 400 s of solidifica-
tion for experiment A: (a) our model and (b) FVM code in Ahmad et al.
[29].

Fig. 6. Solid fraction isovalues after 50 s of solidification for experiment
A: (a) our model and (b) FVM code in Ahmad et al. [29].

Fig. 7. Streamlines (Dw = 1.56 · 10�6) after 100 s of solidification for
experiment B: (a) our model and (b) FVM code in Ahmad et al. [29].
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that the �5% and �10% isovalues present an angular
shape. This can be due to the presence of a strong jump
of solid volume fraction from 0.4 to 1. On the other hand,
let us note the formation of a thin liquid channel, enriched
in solute, at the top of the cavity. This is illustrated in Fig. 6
where the solid fraction isovalue of 0.01 at t = 50 s delimits
the liquid zone. A good agreement between the present cal-
culations and those reported in [29] is observed. In order
to deal with the strong gradients in this upper region a
refined mesh has been used. A 60 horizontal · 36 vertical
mesh was used, with a refinement at the top: the function
H sin(p/2)(i � 1)/(37) was used for defining the ith position
of the vertical sides of the meshes.

3.4.2. Experiment B: (Pb–5% Sn)

In this case, the solutal expansion coefficient is negative,
and the solutal and thermal effects are cooperating. As a
consequence, the circulating fluid is moving down along
the cold wall and then up along the solid. In Fig. 7 the
streamlines obtained with the present model are compared
to the FVM code presented in Ahmad et al. In order to
provide a quantitative comparison with the results by
Hebditch and Hunt [30] and Ahmad et al. [29], the results
are displayed at t = 100 s. This case is first characterized by
a mushy zone of large extension, and second by the exis-
tence of a liquid channel at the bottom of the cavity where



Fig. 8. Solid fraction isovalues after 100 s of solidification for experiment
B: (a) our model and (b) FVM code in Ahmad et al. [29].

Fig. 9. Concentration enrichment isovalues in % after 400 s of solidifica-
tion for experiment B: (a) our model, (b) FEM code in [29] and (c) FVM
code in [29].
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the enriched liquid flowing through the mush is collected.
Fig. 8 shows the solid fraction isovalues calculated with
the two models. Small solid volume fractions are found
in the bottom of the domain. The structure of the concen-
tration field is essentially different from the previous case
due to the opposing convective effects. We show in Fig. 9
the concentration field obtained with our code and with
the two codes presented in [29]. The results between our
code (Fig. 9a) and the FEM code (Fig. 9b) are in good
qualitative agreement, presenting enrichment in solute with
a strong concentration gradient in the lower part of the
enclosure. Note that a rather fine mesh is needed in the bot-
tom region in order to correctly get the gradients of the
different fields. For this calculation, a 80 horizontal · 48
vertical computational grid was used, with a refinement
at the bottom: the function Hcos(p/2)(i � 1)/(49) was used
for defining the ith position of the vertical sides of the
meshes. For this particular case, k1 was used as the ‘‘pore
size’’ in the Kozeny–Carman (Eq. 8) correlation. However,
those two solutions disagree with the FVM simulation
(Fig. 9c) which exhibits segregated channels in the inner
part of the ingot. This discrepancy has been studied since
the publication of the Ahmad et al. paper and a recent
comparison [51] shows that FEM results on non-structured
grids lead to the same kind of solution as Fig. 9c. If this is
confirmed the present model will require further develop-
ments in terms of numerical accuracy. This kind of com-
parison also shows that there is a need of developing
benchmark solutions for validating solidification models
and the associated numerical codes.

The simulations are compared to the experimental
results from [30] in terms of relative mass fraction at the
end of solidification in Fig. 10. For experiment A
(Fig. 10a) the horizontal profile of relative tin mass fraction
at 3.5 cm from the bottom of the cavity shows a fairly good
agreement along the width of the domain, with a larger dis-
crepancy along the insulated wall. In this respect the agree-
ment is comparable with the results presented in [29]. A
similar profile for the relative leads mass fraction for exper-
iment B is represented in Fig. 10b. Again the average
behavior is well represented, and the present solution is



Fig. 10. Profiles of relative mass fraction at the end of solidification at
3.5 cm from the bottom. Comparison with experimental results [30]: (a) tin
mass fraction for experiment A and (b) lead mass fraction for experiment
B.
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similar to the FEM solution presented in Ahmad et al. Sim-
ilar results are obtained for the profiles at different heights
and the results are consistant with the concentration fields
presented in Fig. 9.

3.4.3. Experiment C: (Sn– 0% Bi)

In this experiment, due to the different mode of heat
extraction (linear decrease in time of the cold wall temper-
ature), solidification does not initiate immediately, and a
relatively long period of thermal natural convection takes
place before the beginning of solidification. The results
are displayed in Fig. 11 at a solidification time of 300 s
(left) and 600 s (right).

The calculations show formation of an horizontal
channel that can be seen to increase in the solid fraction
charts (Fig. 11a) at 300 and 600 s as more solid phase is
produced. Lower solid fractions are found at the bottom
of the domain. In addition to the solid fraction field,
the streamlines are presented in Fig. 11b. They show that
the flow intensity is much greater in the high porosity
regions of the mushy zone, and that it decreases in time
as the initial superheating decreases. The bottom part of
the figure (Fig. 11c) displays the calculated macro-segrega-
tion field at the two instants, showing again the presence
of the channel at the bottom of the enclosure. Similarly to
experiment B, the lowest zone is enriched in solute. This is
due to the additional effect of the solutal and thermal
forces that causes the liquid flow to go down through
the mushy zone. These observations are in good agree-
ment with the experimental results reported by Quillet
[31] as well as with his numerical calculations, in terms
of concentration and temperature field. For conciseness
reasons, these results are not recalled in the present docu-
ment. We notice that the model in [31] shows some
inclined freckles (two more freckles taking place). This
might be due to the fact that the model used in this refer-
ence assumes solutal equilibrium (the average concentra-
tions near the interface in both phases are equal to the
equilibrium concentrations). This assumption favors
freckles formation, as will be analyzed in Section 5 where
a parametric study on species exchange coefficient is pre-
sented. The main interest of the solutal equilibrium model
is that it is simple and gives good results for high diffusiv-
ities alloys. However, in the case of limited species diffu-
sion alloys (such as stainless steel), this assumption of
macro-scale solutal equilibrium may not be valid.

As a conclusion of these comparisons with existing
numerical and experimental results in three different situa-
tions, we can underline that the numerical code based on
the simplified ‘‘minimal’’ model of solidification for
metallic binary alloys gives satisfactory results, in good
agreement with different independent experiments and
numerical models. A fully quantitative comparison is
unfortunately difficult to perform, because the physical
parameters required for such an accurate comparison
between the model results and actual data are not avail-
able. This is certainly frustrating, but we believe that the
proposed ‘‘validation’’ study justifies the use of the code
for subsequent studies. We first have in mind the study of
the possible influence of the porosity gradient terms. The
idea is to perform several computations and extract from
the results an order of magnitude of these correction terms,
and decide if they might have significant effects. In this lat-
ter case, this would justify some extra programming effort
to include the significant extra terms in the model. In addi-
tion, the same model may be used to test the sensitivity of
the results to the effective properties of the mush. This is
done in the next sections.

4. Influence of the non-classical terms

The purpose of the following section is to discuss the
influence of the non-classical terms of the complete model,
for the particular test-cases under consideration. For con-
ciseness, the calculations are only presented for experiment
B but the results apply to the other experiment cases.
However, similar estimations would be necessary before
extending the conclusions to very different solidification
dynamics.
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Fig. 11. Experiment C: (a) solid fraction, (b) streamlines and (c) concentration field (% in Bismuth) after 300 s (left) and 600 s (right) of solidification.
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4.1. Brinkman correction terms

As previously said, Eq. (2) is characterized by the pres-
ence of the following three Brinkman terms ðe‘l‘r2h~V ‘i‘;
l‘~re‘:~rh~V ‘i‘; l‘ðr2e‘Þh~V ‘i‘Þ. The first one represents the
classical Brinkman correction term (corresponding to
viscous diffusion effects) while the second and third
terms involve porosity gradients which are related to the



Fig. 13. (a) Ratio of third Brinkman term to first Brinkman term (ratio 5)
and (b) module of the ratio of third Brinkman term to Darcy term for
experiment B after 50 s of solidification (ratio 6).
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heterogeneity of the columnar dendritic mushy zone. For
the three test cases under consideration, these terms have
been estimated on the basis of the numerical results
obtained from the simplified model.

First, the second Brinkman term ðl‘~re‘:~rh~V ‘i‘Þ is com-
pared to the Darcy friction term and to the first Brinkman
correction term, respectively, which are the dominant terms
in the momentum equation. The comparison is performed
using the following ratios:

R1 ¼
j~re‘:~rh~V ‘i‘xj
je2
‘K
�1h~V ‘i‘xj

; R2 ¼
j~re‘:~rh~V ‘i‘zj
je2
‘K
�1h~V ‘i‘zj

ð11Þ

R3 ¼
j~re‘:~rh~V ‘i‘xj
je‘r2h~V ‘i‘j

; R4 ¼
j~re‘:~rh~V ‘i‘zj
je‘r2h~V ‘i‘j

ð12Þ

In Fig. 12, the spatial distribution of R1 and R2 are pre-
sented. It can be seen that both components of the second
Brinkman correction term are small compared to the corre-
sponding Darcy contribution (less than 0.01). It is interest-
ing to note that the maximum values are reached for small
solid volume fractions (less than 10%, see Fig. 8) i.e. at the
vicinity of the top of the dendrites. This is also the region
where the calculations of R3 and R4 (not reported here)
have been found to be of the order 1. The same results were
found for the two other test-cases.

In the same way, the third Brinkman term is compared
to the Darcy term and to the first Brinkman correction
using the ratios

R5 ¼
jr2e‘h~V ‘i‘j
je‘r2h~V ‘i‘j

; R6 ¼
jr2e‘j
je2
‘K
�1j

ð13Þ

R5 and R6 are calculated for the three experiment cases and
results for experiment B are presented in Fig. 13. It is
Fig. 12. Module of the ratio of the second Brinkman term to the Darcy
term for experiment B after 50 s of solidification: (a) x component (R1)
and (b) z component (R2).
shown that R5 can be on the order of 1 meaning that the
third Brinkman term can have the same order of magnitude
as the first one. As previously, these values are reached at
the extremity of the dendrites and in the channel, where
high porosity and porosity gradients are observed. Finally,
R6 is always found to be lower than 1% implying that the
third Brinkman term is negligible in comparison to the
Darcy term.

In conclusion, as expected the second and the third
Brinkman correction terms have been found to be small
compared to the Darcy contribution while they can be of
the same order of the viscous diffusion term especially close
to the tip of the dendrite where the solid volume fraction is
small. As a first approximation, these correction terms will
be neglected.

4.2. Porosity gradient terms in species equations

The derivation of the macroscopic equation for the
solidification rate and species conservation also brings up
non-classical term involving porosity gradients. In this sec-
tion, their order of magnitude are estimated through the
use of the following ratios:

R7¼
jqkDkð~rekÞ:~rhCkikj
jqkhmkðC�k�hCkikÞj

; R8¼
jr:qkDkð~rekÞðC�k�hCkikÞj
jqkhmkðC�k�hCkikÞj

ð14Þ
For the three test-cases, both R7 and R8 ratios were

found to be negligible in the solid and fluid phases. For
example the maximum value for R7 in the solid was of
the order of 10�4 while it reached 10�3 in the core of the
mushy zone.
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4.3. Effect of the Péclet number

Solute dispersion phenomena are due to the correlated
deviations of the velocity and of the species concentrations.
These effects are generally more important in the direction
of the flow than in the transverse direction. They depend
on the intensity of the flow through the local Péclet
number:

Pe ¼ h
~V ‘i‘lk

D‘

ð15Þ

where lk is the characteristic length scale. In our case, lk is
chosen to be the first dendritic arm spacing k1. In order to
study the influence of the flow intensity on the effective dif-
fusion–dispersion coefficient, Bousquet-Melou et al. [26]
solved the associated closure problem for non-chemical
equilibrium model using schematic and digitized dendritic
mushy zones. The classical Péclet-dependence was ob-
tained, that is, for Pe < 10, the effective diffusion tensor is
constant and mainly diffusive, while larger Péclet numbers
give rise to important non-isotropic dispersion effects. Fol-
lowing these authors, the longitudinal and transverse dis-
persion coefficients D‘xx and D‘yy are respectively given by:

D‘xx

e‘D‘

¼ AxxPem;
D‘yy

e‘D‘

¼ AyyPem ð16Þ

where the m exponent was found to be close to 1.5 with a
slight influence of the liquid fraction. The local Péclet num-
ber fields have been evaluated for the three test-cases and
Fig. 14 shows the estimation for experiment B (Pb–5%
Sn). The figure displays the horizontal distribution of the
Péclet number (solid line) and of the solid fraction (dashed
line) at mid-height of the enclosure. The representation is
only provided within the mushy zone where dispersion ef-
fects may occur. As expected, for all the experiments, the
larger values of the Péclet number (Pe P 100) are located
at the vicinity of the tip of the dendrites where a strong flow
intensity is observed. In order to quantify the dispersion
effects, additional calculations were performed using a
modified diffusion–dispersion tensor. Since in the dendritic
Fig. 14. Experiment B: Horizontal profile at mid-height of the local Péclet
number (solid line), and of the solid fraction (dashed line) after 50 s of
solidification.
mushy zone the fluid velocity is mainly orthogonal to the
primary dendritic arm, the longitudinal dispersion is in
the y-direction while the transverse one is in the horizontal
x-direction. Following Bousquet-Melou et al. [26], Axx =
316 · 10�2 and Ayy = 3.16 · 10�3. The results obtained
for experiment C (Bi–Sn) show a very small influence of
the dispersion coefficients on the solid fraction and
macro-segregation fields (less than 1%). This is due to the
macroscopic Péclet number ðh~V ‘i‘L=D‘xxÞ which always re-
mains greater than 1 in this experiment. Therefore, the sol-
ute transport is dominated by convection and the increase
of the solute transport due to dispersion phenomena is not
noticeable. Finally, in situations where dispersion effects
are not negligible, it is important to note that they can have
a stronger influence at the beginning of the process since
the intensity of the convective flow reduces when solidifica-
tion goes on.

5. Influence of permeability and interfacial mass

exchange coefficients

This section concerns the estimation of the influence of
the interfacial mass exchange coefficients and permeability
on the solidification process. In order to illustrate the dis-
cussion, calculations were performed with parameters cor-
responding to experiment C.

5.1. Interfacial mass exchange coefficients

One of the originalities of the macroscopic model is
related to the non-chemical equilibrium representation (dif-
ference between average and interfacial concentrations) of
the solute transport. In terms of effective transport proper-
ties, this non-equilibrium is characterized by two interfacial
species exchange coefficients whose influence on the solidi-
fication process is presented below. Numerical simulations
were carried out using Eq. (17) which has been multiplied
by a factor A

hmk ¼ A� 12
Dk

k2
2ek

ð17Þ

In order to quantify the influence of hmk, four values
of this factor have been taken (A = 0.1, 1, 10, 20). As
expected, for all experiments, the ratio ðqshmsðC�s � hCsisÞÞ=
ðq‘hm‘

ðC�‘ � hC‘i‘ÞÞ was found to be much smaller than 1.
This is due to the strong difference between the liquid and
solid diffusion coefficients for metallic alloys (D‘/Ds � 104).
Therefore, according to equation (6), the phase change rate
is mainly controlled by the interfacial solute exchange coef-
ficient in the liquid phase.

For all the experiments presented in the previous
section, the ratios ðC�s � hCsisÞ=ðhCsisÞ and ðC�‘ � hC‘i‘Þ=
ðhC‘i‘Þ are calculated in order to quantify the deviation
from equilibrium. In the liquid phase, the larger the
exchange coefficients, the closer the system is to local-equi-
librium (A = 0.1 leads to a 5% deviation from equilibrium,
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while A = 20 only leads to 0.03%). It seems that a change in
hml is made up by a change in the amount of non-equilib-
rium. This would explains the small influence of the
interfacial solute exchange coefficient on the solidifica-
tion rate that has been observed in our computations. At
the contrary to the liquid phase, a large deviation from
equilibrium is observed in the solid phase (�10%) but this
has been found to be independent on the exchange
coefficient.

The influence of hml on the solid fraction field is illus-
trated on Fig. 15. It can be observed that the solid fraction
is hardly influenced by the interfacial exchange coefficient,
except at the bottom of the cavity where the solute concen-
tration has been found to be more important. The influence
on the segregation field after 600 s of solidification is also
plotted in Fig. 16. Differences between A = 0.1 and
A = 20 are significant and the 0% segregation isovalue
shows the presence of a freckle for A = 20. Finally, it has
been observed that an increase in the exchange coefficient
increases the amplitude of macro-segregation. For
instance, when A = 0.1, macro-segregation (after 600 s of
solidification) ranges from 9% to 15.74% while A = 1
ranges from 8.9% to 17.37%. This change seems to be
due to equilibrium. Indeed, when the macroscopic concen-
tration field is close to equilibrium, a strong micro-segrega-
tion between the solid and the liquid phases takes place and
Fig. 15. Isovalues of solid fraction for A = 0.1, A = 20 after 300 s of
solidification experiment C. (solid fraction = 0.5 (solid line), 0.4 (dashed
line) and 0.1 (dotted line)).
natural convection in the liquid phase gives rise to a mac-
roscopic solute redistribution.

5.2. Influence of permeability

In order to evaluate the influence of permeability, com-
putations have been performed using the Kozeny–Carman
Eq. (8) which has been multiplied by 0.1, 10 or 100. For
experiment C, the reference value has been obtained for
A = 1 where the macro-segregation field ranges from
8.9% to 17.37%. When Eq. (8) is multiplied by 0.1 this
range reduces (9.67–10.92%) while it is significantly
enlarged when permeability is multiplied by a factor 10
(6.9%–18.5%). This larger macro-segregation range is due
to the increase of convective flow intensity in the mushy
zone giving rise to a larger macroscopic solute redistribu-
tion. The influence of permeability was also carried out
for both moderate (A = 10) and strong A = 1 deviations
to solutal equilibrium. It that latter case, it was observed
that a significant increase of permeability (factor 100) leads
to a moderate change of the solid volume fraction field. At
the contrary, close to the chemical equilibrium (A = 10),
changes of the permeability strongly affect the solid volume
fraction (Fig. 17). Indeed, it is shown that increasing the
permeability can produce freckles in regions where
enriched liquid is collected.
Fig. 16. Isovalues of macro-segregation after 600 s of solidification for
A = 0.1 and A = 20 for experiment C. (�5% (dotted line), 0% (dashed
line), 35% (solid line)).



Fig. 17. Influence of the permeability on the solid volume fraction field for
Experiment C (A = 10): (a) solid fraction isolines: 0.3 (dashed line) and 0.6
(solid line) and (b) Solid fraction field for a permeability multiplied by a
factor 100.
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6. Conclusion

In this paper a macroscopic model of columnar dendritic
solidification of binary mixtures has been presented and
implemented. This model, derived by a volume averaging
technique, is first characterized by extra terms involving
porosity gradients standing for the spatial variation of the
pore-scale geometry and second by a macroscale non-
equilibrium representation accounting for chemical
exchanges at the solid–liquid interface. Due to the complex-
ity of this model, a simplified version, without porosity gra-
dient terms, has been implemented. Numerical simulations
have been compared to the numerical and experimental
results of three metallic alloys solidification cases available
in the literature. Globally, these comparisons have been
found to be in good qualitative agreement with the previous
results but further numerical developments are found to be
necessary. Porosity extra terms were systematically esti-
mated on the basis of these numerical simulations. They
were found to be negligible except in the limited zone at
the vicinity of the dendrites tip. However, we must keep in
mind that the possible influence of the porosity gradient
terms on the macroscopic fields has not been evaluated
and that numerical simulations using the full model, includ-
ing these terms are still necessary. In order to study the solute
dispersion effects, the local Péclet number fields have been
evaluated for the three test-cases. In all cases, large values
of the Péclet number were found at the vicinity of the tip
of the dendrites but a very small influence of the dispersion
coefficients on the solid fraction and macro-segregation
fields was observed. Finally, the influence on solidification
of effective transport properties such as permeability and
interfacial solute exchange coefficients have been investi-
gated. It was found that both parameters have a strong influ-
ence on macro-segregation and solid fraction fields. Indeed,
a lower(larger) permeability gives rise to a weaker(stronger)
convective regime and therefore to a more uniform(non-uni-
form) solute segregation field. A significant influence of the
permeability tensor on freckle formation was also observed.
The influence of the interfacial solute exchange coefficients
on the deviation from chemical equilibrium has been empha-
sized. As expected, in the liquid phase, the larger the mass
exchange coefficients, the closer the system is to local chem-
ical equilibrium. This increases the amplitude of macro-seg-
regation, and freckle formation has been observed. All these
results confirm the need to account for chemical non-equilib-
rium in macroscopic solidification modeling and to accu-
rately define the average properties transport.
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